Water Recipe: Truth Serum

Truth Serum is a balanced, versatile recipe designed to extract lots of character.

My sincere thanks to Max for his spectacular review of this water.

The Recipe

10x Concentrate – Do not drink!

Brew water – Do drink!

  • 3406.9g distilled water
  • 378.5g concentrate
  • Silica – Optional. Add 1-2 drops per liter of brew water to enhance the mouthfeel. This is not officially a part of the recipe.

Tools – Not optional.

  • Milligram scale – For the minerals.
  • Higher capacity scale – For the water.
  • TDS Meter – For verification and troubleshooting. TDS meters usually underreport by roughly one-third, but at least it will tell you if you’ve made an order of magnitude error.
  • Squeeze bulb – Useful in various ways throughout the entire process.
  • Silica desiccant packets – Throw one of these in the bag of magnesium chloride hexahydrate, which tends to deliquesce fairly quickly.

Best Practices

  • Milligram scales tend to have unpredictable and inconsistent behavior. Get to know your scale and work around its behavior. Try to load the minerals into the dish (included with the milligram scale) in larger amounts. Loading the minerals only a few milligrams at a time tends to “confuse” the scale. Even small errors will have significant impacts in practice, so be exact. To ensure that the mineral dosage is correct, weigh the dish by itself before adding minerals and write that number down. When it comes time to add the mineral, place the dish onto the scale and tare it. Add the mineral until you get the correct reading from the scale, then remove the dish and tare the scale again. Wait one minute for the pressure plate to return to its original position, then weigh the dish with the mineral in it again. The reading should be equal to the weight of the dish plus the weight of the mineral. You will likely see an error upon following these steps, and that’s to be expected, just add or remove some mineral to get the correct reading. Take the time to be exact, it will be worth it in the long run.
  • Use the squeeze bulb to wash off any remaining mineral from the dish into the water. Some of these minerals tend to stick. Make sure that you’ve filled the squeeze bulb from the already-measured jug of 3785.4g distilled water, and empty any remaining water back into the mix when finished dosing the minerals.
  • To avoid precipitation of minerals, wait several minutes after adding each mineral, shaking occasionally. If you notice any precipitate in the water, you’ll need to start over. Calcium sulfate dihydrate will take the longest to dissolve by far, so you’ll likely need to wait an hour or so for the concentrate to clear up completely. Only then will it be ready for use.

Analysis

(Special thanks to Martin Lersch at https://khymos.org/ for this incredibly useful tool.)

Where to begin? First, a clarification: Ratios are based on mmol/L numbers, which is the number of molecules rather than the mass of those molecules, which is measured in mg/L. I’m no chemist, but this concept seems integral to the design of the calculator, as well as to understanding water chemistry.

Going back to the screenshot, there’s a lot going on here, so I’ll speak on the 5 primary concepts I had in mind when creating the recipe. These summaries are greatly oversimplified, but they’ll do for this post.

  1. Ca:Mg ratio – Calcium (Ca) expresses sweetness, magnesium (Mg) expresses pungency, tannins, sourness and metallic taste, and also intensifies the aftertaste. The 2.15:1 ratio balances sweetness and pungency.
  2. Cl:SO4 ratio – Chloride expresses sweetness. Sulfate (SO4) expresses astringency, bitterness, core flavor characteristics, and rinse taste, AKA scum (debris). The 1.33:1 ratio results in a reasonable amount of sweetness and plenty of character.
  3. Na:K ratio – Sodium (Na) has a salty taste, though it isn’t really noticeable in the amount that’s used for this recipe. I didn’t like the effect of potassium (K) in my water, because even in minute amounts it presented as a cold, inedible bitterness. For that reason, I didn’t use any potassium in this recipe.
  4. H:A ratio – The extraction power of hardness (H) minerals is limited by alkalinity (A), which acts as a buffer. A too-high ratio of hardness to alkalinity will result in excess astringency and a generally intense/powerful extraction. A too-low ratio will result in dull, weak, and “blurry” tea. This ratio was pushed to the brink of excess astringency/intensity, then dialed back just a tad.
  5. Overall mineral concentration: Keeping all other factors constant, increasing the overall concentration will result in a thicker and stronger brew. When adjusting concentration, the H:A ratio should be adjusted to compensate for the change in intensity. The concentration is currently in a good place for most tea.

Disclosures

  • The water recipe is not final. It will likely stay a perpetual work-in-progress as I continue to improve on it.
  • This post will probably be updated periodically to adjust the recipe and/or include new information.

Enjoy.

Leave a Reply

Your email address will not be published. Required fields are marked *